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ABSTRACT

. A simple algorithm is descrited here for removing nonphysical self
’ forces from two popnlar electromagnetic plasma simulation wodels. This
3 - . algorithm also has two additional features; it considerably reduces

3 short-wavelength noise and unwanted numerical fluctuations, and permits
] faster integration of the particle orbit equations by roughly a factor
of two.
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3 an interim report on a continuing problem.
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This-nebe describes a simple algorithm for removing nonphysical

E
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3
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self forces from two popular electromagnetic plasma simulation models.

This algorithm also has two additional features; it considerabl; reduces

. short-wavelength noise and unwanted mumerical fluctuations, and permits

R B 0% e W A

faster integration of the particle orbit equations by roughly a factor

of two. It _is currently being included in the CLYRAD cude [1,2].

There are three major numerical models in which electrumagnetic

s L L et L L L

radiation fields are self-consistently coupled tu the Lorentz-liewton

equations for the charged-particle motion. The first of these, propoused

o sl

by Buneman [3], includes an explicit leapfrog algorithm for solving the
Maxwell Equations and a special charge-current algorithm, based -n the
NGP (Nearest Grid Point) particle interposlation, which ensures that the
continuity equation for charge and current is avtomatically satisfied
at each timestep in finite-difference form. The second of these three

algorithms (1] uses essentially the same field treatment but has a mure

-

flexible treatment of current accum.lation in which, however, a Pcissun

Equation must be solved. The third algorithm [1] differs frum the
first two in the treatment of the electromagnetic fields. Rather ihan

a finite difference approximation to the Maxwell Equations, the 2lg.rithm

solves the Fourier transform of the equations in k-space. This third
algorithm has not been implemented in multidimensions but a foure-

runner method in one dimension was devised by Langdon and Dawscn [L}.

: Many variations of the first two algorithms are p.ssible ard several

have heen coded and used [5,6]. Two of these are the ! .rse-liielson

e, A AAI AU M ol s 30 M b e B

algor.thms A and B. Their algorithm A is an important generalizatiwun
of Buteman's algcrithm to the PIC (particle-in-cell) linear

{ interpilation [8,9]. This algorithm also satisfies Puissen's
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§ Equation automatically at every timestep. The Morse-Nielsoun algorithm
g B, as pointed out by Langdon [7], is essentially equivalent to
? the Boris algorithm. Thus our comments apply to the Boris algorithm
used in CYLRAD, to both Morse-Nielson algorithms and to the Sinz (5] 3
% algorithm. é

These electromagnetic algorithms treat particles moving on staggered,

interlaced grids of variables as shown in Fig. 1 for two dimensions. Each

§ field variable is so positioned that the time-dependent Maxwell Eguatiocns 3
é reduce to an extremely simple, finite-difference form for advancing é
% E and B which is reversible and second-order accurate. The generalizati.n §
é of this 2D field-variable arrasngement to 3D is straight forward and the %
specialization to 1D is trivial. As can be seen, the finite-difference :
% form of the divergence equation which should be satisfied at each cycle
: is
4 ( (:+41/2,5) - E (i-1/2,5)) . (B (1,3¥1/2) - B _(1,§-1/2))
Ox Oy ‘
= ymo(i,g). (1)

The electrustatic fields which result fraw placing a parti~le at rect
on the (i,J) grid point are different from those faund in an electr.-
static cude because the x and y electric field grids are displaced, 2:

seen in Fig. 1, by 0x/2 and Oy/2 respectively from the positiuns they

;
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would occupy in a standard electrostatic code (6,9]. To simplify the

3

Sad i

analysis, the «lectrostatic and the electromagnetic grids are compared

in Fig. ¢ fur a 1D case where a test particle of unit charge it at
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position @ off a grid point (0 <a < 6x/2 = 1/2).
Consider first the electromagnetic grid as used in current simulation
codes (Fig. 2). The linearly interjolated charge density at grid points

J and 1 are p(0) = 1-a and p(1) = Q. If ¥ Eypps E are defined to

3/2
be the electric field at x = j;l/é and x = j;}/é respectively due to a

unit charge at x = 0, then summing the contributions from the twe grid

points one gets

B(-1/2) = -(Q-0) E 4, - @ E, ,
E (1/2)= (1-a) Eyp~ @B

Ex(s‘/a) = (1-a) Esfo

1/2°

Q .
YaQE

Since the particle lies between Ex’l/a) and Ek(-l/z), the linearly inter-
polated x electric field, as would be found by an electromag etic simulation

code, is

Ex(uz) = (1/2+ @) Ex(1/2) + (1/f2 - u) Ex(l/'r.‘)

= 2u (1-2u) [El/.?' E, f2+_E. /2 ] # 0.

Equaticn (3) shows that the self electrostatic field of a single simulaticn

()

partizle is non-zero. Thus all sorts of spurious effects can result.
Figure 3 shows a 1D piot of the equivalent potential a particle would see
due to its self-force. We have carried vut tests on an eiectrumagnetic
cude and the uscillations of a particle in this self field have been
vbserved. The preceeding analysis has been generalized t electructatic
andé magnetostatic self-forces in Lwo and three dimensionuz. i(n every

case the results are the same; spurious electrsstatic and magnetostati«

Woger
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forces are found when the charges do not exactly lie on grid lines. We

know that there are no self forces in tne usual electrostatic ccdes [£,9)

and the electrostatic-code field in Fig. 2 are clearly closely related

to the electromagnetic-code f'ields. Therefore, it should be a csimple

matter to eliminate the electrostatic self-forces from the electrcmagneti~-

code. From Fig. 2 we have

E(1/2) = QQ%O_@) (4)

Ex(o) =¢(1) - o(-1) . ()

the fields are therefore related by

Ec(0) = 1/2 [E(1/2) + E(-1/2)] (6)

If we linearly interpolate to the particle position using the averaged

iields of Eq. (6) and Eq. (2), we get

Eq@) = (1-a) E (0} + @& {1)

o~
-
.

= 0.

This is the desired result of zero self-force. When gereralized to tuwo
and three dimensions, the electrostatic and magnetostatic self forces
are found tco be zerc. Furthermore, since the argument is basically .ne

of symmetry rather than being based on any particular force law, the

determination of ¢(i) from p(i) admits all finite-sized particle algcritims
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as well as the 3,5, and 7 point Poisson operators found in one, tJo,
and three dimensions.

The averaging alvorit! . developed here for fully electrumagnetic
simulations in two - in.nsions is an obvious extension of Eq.(6)to the
field-v:riab. 2 layout shown in Fig. 1. The three componen’ss of particle
current density, Jﬁ(i,j), J?(i,j) and Jg(i,j) are all found by linear
interpolat .on onto the(i,j)grid, exactly as p(i,j). The current densities

fcr use on the interlace? field grids are then computed as foullows:

5o Ld) = U [0B(,9) + aBiv,0)],

.

Jii,041/2) = 1/2 [J‘y’(i,n‘) + 39(1,5+1)], (&

3,(i,3) = I5(5,3).

The six field compcnents, Ek’ Ey’ Ez’ Bx’ ay’ and Bz are then all in-
tegrated exactly as prescribed by the staggered-leapirug algorithm.
These field cumponents are however, averaged bacxk to the particle gria

before being used to advance the particle egquations of motion. Thus

EP(i,5) = 1/2 [E (i*1/21,3) + E (i-1/2,5))

E§(i,5 = /2 [Ey(1,5%1/2) + Ej(1,3-1/2)]

ED(1,5) = E,(i,3),

BR(i.3) = 1/2 [B (i,541/2) + B (3,5-1/2)], o
s0(,d) = 1/2 [B,(341/2,5) + B,(3-1/2,0)),

P(1,0) = 1/ [B,(3#41/2,541/2) + B (141/2,5-1/2)

+ B,(i-1/e,392/2) + B (1-1/2,5-1/2)).
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The original fields E and B are retained unchanged, however, for use in

the next cycle to advance Maxwell's Equations. They are not to be computed

as averages of the particle fields ,@p and ’gp .

The immediate consequence of adding the averaging stages given by
Eqs. (8) and (9) to standard fully electromagnetic codes is the removal
of nonphysical electrostatic and magnetostatic self-forces. 2re are

two other favorable and inportant conseguences. First, the averages

required are smootlLing operations; therefore, spurious numerical Cherenkov

radiation and bremmstrahlung, arising mostly at short wavelengths should
be strongly suppressed. Second, a sizeable cimplification results since
all particle quantities are now defined on a single grid. wurly cne cet
of bilinear weight coefficients need be found, rather than four, and thus
it is expected that optimized particle integration can be speeded up by

at least 2 factor of two.
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Fig. 1 - The staggered-interlaced grids of a 2D electromagnetic simulation

code. In three dimensions the E, J;, By, and By grids are all displaced
half a cell, §z/2 cut of the plane of the figure.
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